Efficient and Scalable Pareto Front Generation for Energy and Makespan in Heterogeneous Computing Systems

نویسندگان

  • Kyle M. Tarplee
  • Ryan Friese
  • Anthony A. Maciejewski
  • Howard Jay Siegel
چکیده

The rising costs and demand of electricity for high-performance computing systems pose difficult challenges to system administrators that are trying to simultaneously reduce operating costs and offer state-of-the-art performance. However, system performance and energy consumption are often conflicting objectives. Algorithms are necessary to help system administrators gain insight into this energy/performance trade-off. Through the use of intelligent resource allocation techniques, system administrators can examine this trade-off space to quantify howmuch a given performance level will cost in electricity, or see what kind of performance can be expected when given an energy budget. A novel algorithm is presented that efficiently computes tight lower bounds and high quality solutions for energy and makespan. These solutions are used to bound the Pareto front to easily trade-off energy and performance. These new algorithms are shown to be highly scalable in terms of solution quality and computation time compared to existing algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multithreading Local Search For Multiobjective Energy-Aware Scheduling In Heterogeneous Computing Systems

This article introduces an efficient multithreading local search algorithm for solving the multiobjective scheduling problem in heterogeneous computing systems considering the makespan and energy consumption objectives. The proposed method follows a fully multiobjective approach using a Pareto-based dominance search executed in parallel. The experimental analysis demonstrates that the new multi...

متن کامل

A new Shuffled Genetic-based Task Scheduling Algorithm in Heterogeneous Distributed Systems

Distributed systems such as Grid- and Cloud Computing provision web services to their users in all of the world. One of the most important concerns which service providers encounter is to handle total cost of ownership (TCO). The large part of TCO is related to power consumption due to inefficient resource management. Task scheduling module as a key component can has drastic impact on both user...

متن کامل

An Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ

An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...

متن کامل

An Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ

An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...

متن کامل

Investigating Pareto Front Extreme Policies Using Semi-distributed Simulation Model for Great Karun River Basin

This study aims to investigate the different management policies of multi-reservoir systems and their impact on the demand supply and hydropower generation in Great Karun River basin. For this purpose, the semi-distributed simulation-optimization  model of the Great Karun River basin is developed. Also, the multi-objective particle swarm optimization algorithm is applied to optimize the develop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013